BIMETRIC THEORY OF FRACTIONAL QUANTUM HALL STATES

Andrey Gromov

Kadanoff Center for Theoretical Physics

Chaos, Duality and Topology in CMT, 2017
ACKNOWLEDGMENTS

AG, Scott Geraedts, Barry Bradlyn Phys. Rev. Lett. 119, 146602

AG, Dam Thanh Son 1705:06739 (To appear in PRX)

Dung Nguyen, AG, Dam Thanh Son (In Progress)

Other major references

Maciejko, Hsu, Kivelson, Park, Sondhi PRB 88, 125137 - (2013)
You, Cho, Fradkin PRX 4 041050 - (2014)
PLAN

Introduction to QH effect in curved space

Girvin-MacDonald-Platzman mode

- Lowest Landau Level
- W_∞ algebra
- Single Mode Approximation

Bimetric theory of FQH states

- Bimetric theory
- How does it work?
- Consistency checks

Conclusions and open directions
AT THE QUANTUM HALL PLATEAU

- Gap to all excitations (charged and neutral)
- All dissipative transport coefficients vanish
- Parity and time-reversal broken, but \mathcal{PT}-symmetric
- No Lorentz invariance
- Quantized non-dissipative transport coefficients
- Not uniquely characterized by the filling factor

\[N = \nu N_\phi \quad \quad \sigma_{xy} = \nu \frac{e^2}{h} \]
Does anything universal happen at the scale $E \sim \text{gap}$?

Girvin, MacDonald, Platzman 1986

Balram, Pu 2017

Haldane Rezayi 1985
Geometry is encoded into time-dependent metric

\[ds^2 = g_{ij}(x, t) dx^i dx^j \]

It is more convenient to use vielbeins

\[g_{ij} = e_i^A e_j^B \delta_{AB} \]

\[g = e \cdot e^T \]

There is a \(SO(2) \) redundancy

Corresponding ``gauge field'' is the \textit{spin} connection \(\omega_\mu \)

Spin connection is a ``vector potential'' for curvature

\[\frac{R}{2} = \partial_1 \omega_2 - \partial_2 \omega_1 \]

\[\omega_0 \sim \epsilon_A^B e_i^B \partial_0 e_i^A \]
CHERN - SIMONS THEORY OF FQH STATES

\[S = \frac{k}{4\pi} \int ada - \frac{q}{2\pi} \int adA - \frac{s}{2\pi} \int ad\omega \]

- Determines filling \(\nu = k^{-1} \)
- Electric charge of constituent particles
- "Mean orbital spin"
- Wen-Zee term
- Quantum "emergent" gauge field
- External e/m field
- \(SO(2) \) spin connection

For multi-component states each component has its own \(S_I \)

Wen, Zee 1991
Wen-Zee term couples the electron density to curvature

$$\rho = \frac{\nu}{2\pi} B + \frac{\nu s}{4\pi} R$$

Implies a global relation on a compact Riemann surface

$$N = \nu N_{\phi} + \nu S \frac{\chi}{2}$$

Quantum number $S = 2s$ is called Shift

Also describes the quantum Hall viscosity

$$\langle T_{xx} T_{xy} \rangle = i \omega \eta_H \quad \eta_H = \hbar \frac{S}{4\rho}$$

Beyond TQFT we face a strongly interacting problem

What can we do about it?

• Trial states
• Exact diagonalization
• Hydrodynamics
• Flux attachment (composite bosons and fermions)
• *Bimetric theory*
The GMP mode has been observed in inelastic light scattering experiments.
GENERAL REMARKS ABOUT THE GMP MODE

★ Universally present in **fractional** QH states
★ Absent in **integer** QH states
★ Angular momentum or "spin" 2, regardless of microscopic details
★ Nematic phase transition = condensation of the GMP mode
★ Effective theory of the GMP mode should to be a *theory of massive spin-2 excitation*
The electron density operator

\[
\rho(x) = \sum_{i=1}^{N_{el}} \delta(x - x_i)
\]

Fourier

\[
\rho(k) = \frac{1}{2\pi} \sum_{i=1}^{N_{el}} e^{ik \cdot x_i}
\]

In complex coordinates

\[
k \cdot x_i = \bar{k} z_i + k \bar{z}_i
\]

After the Lowest Landau Level projection

\[
\bar{z} \quad \rightarrow \quad 2\partial_z
\]

Projected density operators

\[
: \bar{\rho}(k) : = \sum_{i=1}^{N_{el}} e^{ik \partial z_i} e^{i\bar{k}z_i}
\]

Satisfy \(W_\infty \) algebra

\[
[\bar{\rho}(k), \bar{\rho}(q)] = 2i \sin \left[\frac{\ell^2}{2} k \times q \right] \bar{\rho}(k + q)
\]
The LLL generators of W_∞ are $\mathcal{L}_{n,m} = \sum_{i=1}^{N_{el}} z_i^{n+1} \partial z_i^{m+1}$.

Operators $\{\mathcal{L}_{0,0}, \mathcal{L}_{1,-1}, \mathcal{L}_{-1,1}\}$ form $\mathfrak{sl}(2,\mathbb{R})$ algebra.

The projected density operator is expanded in $\mathcal{L}_{n,m}$:

$$\bar{\rho}(k) = e^{-\frac{|k|^2}{2}} \sum_{m,n} c_{nm} \bar{k}^n k^m \mathcal{L}_{n-1,m-1}$$

$\mathcal{L}_{n,m}$ create *intra-LL* state at momentum k.
At long wave-lengths the GMP mode is

\[\bar{\rho}(k)|0\rangle = \left[\frac{k^2}{8} L_{-1,1} + \frac{\bar{k}^2}{8} L_{1,-1} + \ldots \right] |0\rangle \]

The GMP state \(\bar{\rho}(k)|0\rangle \) is a shear distortion at small \(k \)

For IQH \(\bar{H} = 0 \) \(\rightarrow \) \(\bar{\rho}(k)|0\rangle \) is a 0 energy state

Consider two-body Hamiltonian \(\bar{H} = \sum_k V(k)\bar{\rho}(-k)\bar{\rho}(k) \)

Since \([H, \bar{\rho}(k)] \neq 0 \) the shear distortion costs energy

At small \(k \) GMP mode is a gapped, propagating, shear distortion of the FQH fluid
BIMETRIC THEORY
The spin-2 mode is described by a symmetric matrix $\mathbf{h}_{AB}(\mathbf{x}, t)$.

Given \mathbf{h}_{AB} we introduce an ``intrinsic'' metric and vielbein

$$\hat{g}_{ij} = e_i^A e_j^B \mathbf{h}_{AB} = \hat{e}_i^\alpha \hat{e}_j^\beta \delta_{\alpha\beta}$$

FQH constraint: $\sqrt{g} = \sqrt{\hat{g}}$

$SO(2)$ spin connection and curvature follow

$$\frac{\hat{R}}{2} = \partial_1 \hat{\omega}_2 - \partial_2 \hat{\omega}_1 \quad \hat{\omega}_0 = \frac{1}{2} \epsilon_{\alpha\beta} \hat{e}_\alpha^i \partial_0 \hat{e}_\beta^i$$

Not the same as two copies of Riemannian geometry

$$\text{Diff} \times \text{Diff} \rightarrow \text{Diff}_{\text{diag}}$$

This geometry involves two metrics (g_{ij}, \hat{g}_{ij}), hence *bimetric*

Appeared recently in theories of massive gravity
Can visualize $\hat{g}_{i,j}$ as a (fluctuating) pattern on the surface
Chern-Simons theory interacting with fluctuating metric

\[\mathcal{L} = \frac{k}{4\pi} ada - \frac{1}{2\pi} A da - \frac{s}{2\pi} ad\omega - \frac{s}{2\pi} ad\hat{\omega} + S_{pot}[\hat{g}] \]

We integrate out the gauge field

\[\mathcal{L} = \mathcal{L}_1[A, g] + \mathcal{L}_{bm}[\hat{g}; A, g] \]

Where \(\mathcal{L}_1[A, g] \) contains no dynamics and

\[\mathcal{L}_{bm} = \frac{\nu s}{2\pi} A d\hat{\omega} - \frac{M}{2} \left(\frac{1}{2} \hat{g}_{ij} g^{ij} - \gamma \right)^2 \]

For IQH \(k = 1 \) there is no \textit{intra-LL dynamics} and

\[\mathcal{L} = \mathcal{L}_1[A; g] \]
Density and current operators acquire geometric meaning

Fluctuations of electron density = fluctuations of local Ricci curvature

\[\rho = \frac{\nu \varsigma}{4\pi} \hat{R} \]

Fluctuations of electron current = fluctuations of \``gravi-electric`` field

\[j^i = \frac{\nu \varsigma}{2\pi} \epsilon^{ik} \hat{E}_k \]

To the leading order in \(k \), \textit{everything} is determined by \(\varsigma \)

Continuity equation holds identically

\[\partial_0 \hat{R} + \epsilon^{ik} \partial_i \hat{E}_k \equiv 0 \]
This potential has two phases

If $\gamma < 1$ the theory is in the gapped "symmetric" phase

$$h_{AB} = \delta_{AB}, \quad \hat{g}_{ij} = g_{ij}$$

If $\gamma > 1$ the theory is in the gapless nematic phase

$$h_{AB} = h_{AB}^{(0)}\quad \hat{g}_{ij} \neq g_{ij}$$

We will be interested in the "symmetric" phase
In flat space we chose the parametrization

\[h_{AB} = \exp \left(\begin{pmatrix} Q_2 & Q_1 \\ Q_1 & -Q_2 \end{pmatrix} \right), \quad Q = Q_1 + iQ_2 \]

\[\bar{Q} = Q^* \]

and linearize in flat space around

\[Q = 0, \quad h_{AB} = \delta_{AB} \]

Gap of the GMP mode

\[\mathcal{L}_{bm} \approx i \frac{\mathcal{S} \rho_0}{4} \bar{Q} \dot{Q} - \frac{m}{2} |Q|^2 \]
To determine the coefficient ς we calculate the SSF

$$\bar{s}(k) = 2\pi \ell^2 \nu^{-1} \langle \rho_{-k} \rho_k \rangle$$

Calculation in the linearized theory reveals

$$\bar{s}(k) = \frac{2|\varsigma|}{8} |k|^4 + \ldots$$

Match this to a general LLL result for chiral states

$$\bar{s}(k) = \frac{|S - 1|}{8} |k|^4 + \ldots$$

This uniquely determines

$$2|\varsigma| = |S - 1|$$

Vanishes for IQH
From the action we read the CCR

\[\frac{\nu \varsigma}{2\pi} A d\hat{\omega} = \frac{\nu \varsigma}{2\pi} B \hat{\omega}_0 = \frac{\varsigma \rho_0}{2} \epsilon_{\alpha \beta} \hat{e}^i_{\alpha} \frac{\partial}{\partial t} \hat{e}^i_{\beta} \]

Which leads to the \(\mathfrak{sl}(2, \mathbb{R}) \) algebra for the metric

\[[\hat{g}_{zz}(x), \hat{g}_{\bar{z}\bar{z}}(x')] = \frac{16}{\rho_0 \varsigma} \hat{g}_{zz}(x) \delta(x - x') \]

\[[\hat{g}_{\bar{z}\bar{z}}(x), \hat{g}_{zz}(x')] = \frac{8}{\rho_0 \varsigma} \hat{g}_{\bar{z}\bar{z}}(x) \delta(x - x') \]

Turn off external fields

\[\frac{\nu \varsigma}{2\pi} A d\hat{\omega} = \frac{\nu \varsigma}{2\pi} B \hat{\omega}_0 = \frac{\varsigma \rho_0}{2} \epsilon_{\alpha \beta} \hat{e}^i_{\alpha} \frac{\partial}{\partial t} \hat{e}^i_{\beta} \]

Invariant under \(SL(2, \mathbb{R}) \)

Potential breaks \(SL(2, \mathbb{R}) \)

Appeared in Verlinde 1989
Algebra of the spin connections closes

$$[\hat{\omega}_i(k), \hat{\omega}_j(q)] = \frac{1}{\rho_0\varsigma} \left[k_j \hat{\omega}_i(k + q) - q_i \hat{\omega}_j(k + q) \right] - \frac{i\epsilon_{ij}}{2\rho_0\varsigma} \hat{R}(k + q)$$

Spin connection couples like the dipole moment

$$\hat{\omega}dA \approx E_i\epsilon_{ij}\hat{\omega}_j = \mathbf{E} \cdot (\epsilon\hat{\omega})$$

(compare to \(U = -\mathbf{E} \cdot \mathbf{d} \))

``Dipole'' algebra implies

$$[\hat{R}(k), \hat{R}(q)] = \frac{4\pi}{\nu\varsigma} i(k \times q)\ell^2 \hat{R}(k + q)$$

Small \(k \) GMP algebra follows

$$[\hat{\rho}(k), \hat{\rho}(q)] \approx il^2(k \times q) \hat{\rho}(k + q)$$
Complete Lagrangian up to three derivatives

\[\mathcal{L}_{\text{bm}} = \frac{\nu_S}{2\pi} A d\omega - \frac{c}{4\pi} \omega d\omega - \frac{\nu_S}{4\pi} \nabla_i E_i B - \frac{\ell^2}{8\pi} \nabla_i E_i R - \frac{m}{2} \left(\frac{1}{2} g_{ij} g^{ij} - \gamma \right)^2 - \frac{\alpha}{4} \left| \Gamma - \hat{\Gamma} \right|^2 \]

★ \textit{Projected} static structure factor up to \(|k|^6 \)

★ Dispersion relation of the GMP mode up to \(|k|^2 \)

★ \textit{Absence} of the GMP mode and nematic transition in IQH

★ Hidden LLL projection and manifest Particle-Hole duality

★ Girvin-MacDonald-Platzman algebra holds up to \(|k|^4 \)

★ \textsl{``Guiding center''} DC Hall conductivity to \(|k|^2 \)

★ \textsl{``Guiding center''} Hall viscosity to \(|k|^2 \)

★ Shear modulus of the FQH fluid

★ Hints at rich structure of the full \(W_\infty \) theory and more…

AG, Son 2017
OPEN PROBLEMS

★ Understand the non-linearity
★ Fully covariant formulation
★ Implications for the boundary theory
★ CFT construction of the GMP state?
★ Competing orders in multi-layer states
★ Non-linear higher spin theory
★ Fractional Chern insulators
★ Collective neutral fermion mode in 5/2 state
★ Bimetric theory for PH-Pfaffian
★ Covariant, nonlinear formulation of CFL
★ Quantum Hall liquid crystal phases
★ Detailed study of anisotropic FQH states
★ Relation to ``fracton'' theories?
★ 3D
★

Bi-layer FQH

Neutral Fermion in 5/2 state

FCI
``quantum metric''

FQH liquid crystal
SINGLE MODE APPROXIMATION (SMA)

SMA states that observables are saturated by $\bar{\rho}(k)|0\rangle$

For example, optical absorption spectrum

$$\Delta(k) = \frac{\langle 0|\bar{\rho}(-k)H\bar{\rho}(k)|0\rangle}{\langle 0|\bar{\rho}(-k)\bar{\rho}(k)|0\rangle}$$

SMA is accurate at small k

SMA is exact near the nematic phase transition
Aharonov-Bohm phases
quantum numbers of quasiholes
Mutual statistics*
Chiral edge modes:
tunneling exponents, thermal Hall conductance

Linear response:
Hall conductance, Hall viscosity, …

Ground state degeneracy

\[W[A, \omega] = \int Dae^{iS[a;A,\omega]} \]
Electrically charged particles in magnetic field have AB effect

\[\Psi \rightarrow \exp \left(2\pi ie \oint_C A_i dx^i \right) \Psi \]
\[\partial_1 A_2 - \partial_2 A_1 = B \]

Particles with orbital spin in curved space have AB effect

\[\Psi \rightarrow \exp \left(2\pi i \bar{s} \oint_C \omega_i dx^i \right) \Psi \]
\[\partial_1 \omega_2 - \partial_2 \omega_1 = R/2 \]

AHARONOV - BOHM EFFECT

Wen Zee 1992
In the remainder of the talk I will use the term “orbital spin”.

In magnetic field electrons quickly move in cyclotron orbits

\[\omega_c = \frac{B}{m_{el}} \]

We consider the limit \(m_{el} \rightarrow 0 \)

“Orbital spin” describe the coupling of the low energy physics to spatial geometry.
COMPOSITE FERMI LIQUID

States at filling \(\nu = \frac{N}{2N+1} \approx \) IQH of composite fermions at \(\nu_{\text{eff}} = N \)

Can be treated via Fermi liquid theory when \(N \) is large

Semiclassically the d.o.f. are multipolar distortions of the Fermi surface

- \(\mathbf{u}_0 \) (Dilation)
- \(\mathbf{u}_\pm 1 \) (Translation)
- \(\mathbf{u}_\pm 2 \) (Shear)
- \(\mathbf{u}_\pm 3 \)
- \(\mathbf{u}_\pm 4 \)
- \(\cdots \) (``Higher spin'' area preserving deformations)
- \(\mathbf{u}_\pm n \) (dynamical)
COMPOSITE FERMI LIQUID IN SMA

Hamiltonian

\[
H = \frac{v_F k_F}{4\pi} \sum_n \int d^2x (1 + F_n) u_n(x) u_{-n}(x),
\]

CCR

\[
[u_n(x), u_m(x')] = \frac{2\pi}{k_F^2} \left(n\bar{b}\delta_{n+m,0} - ik_F\delta_{n+m,1}\partial_z - ik_F\delta_{n+m,-1}\partial_{\bar{z}}\right)\delta(x - x')
\]

All modes are gapped at \(\Delta_n = n(1 + F_n)\omega_c \)

The limit \(\Delta_2 \ll \Delta_n \) for all \(n \geq 3 \) is the SMA

Only dynamics of shear distortions \(u_{\pm 2} \) remains

\[
[u_2(x), u_{-2}(x')] = \frac{4\pi}{2N + 1} \delta(x - x')
\]

Phenomenological \"Landau parameters\"

Nguyen, AG, Son In Progress
Effective Lagrangian in SMA

$$\mathcal{L}_{\text{SMA}} = -\frac{i}{2} \frac{2N+1}{2\pi} u_2 \dot{u}_{-2} + \frac{i}{2} \frac{N^2(2N+3)\ell^2}{12\pi} u_2 \Delta \dot{u}_{-2} - \frac{c_0(2N+1)\omega_c}{2\pi} u_2 u_{-2} + \frac{c_2(2N+1)\omega_c\ell^2}{2\pi} u_2 \Delta u_{-2}$$

coincides with the linearized bimetric theory

$$\mathcal{L}_{\text{bm}} = \frac{2N+1}{16\pi} \hat{A} d\hat{\omega} - \frac{N^2(2N+3)}{96\pi} \hat{\omega} d\hat{\omega} - \frac{\tilde{m}}{2} \left[\hat{g}_{ij} \hat{g}^{ij} - \gamma \right]^2 - \frac{\alpha}{4} \left[\Gamma - \hat{\Gamma} \right]^2$$

Bimetric theory prescribes coupling of the CFL to curved space

Conjecture:

Bimetric theory is the geometric non-linear completion of the CFL in the SMA.

What about beyond SMA?