Chains of “Interacting” Non-Abelian Quasiparticles

Nick Bonesteel

NHMFL & Dept. of Physics, Florida State University

Work with: Huan Tran (FSU), Lukasz Fidkowski (Caltech), Kun Yang (FSU), Gil Refael (Caltech), Joel Moore (Berkeley).

L. Fidkowski, G. Refael, NEB, J. Moore arxiv: 0807.1123
H. Tran, NEB, in preparation.

Support: US DOE
Non-Abelian FQH States (Moore, Read ’91)

Essential features:

A degenerate Hilbert space whose dimensionality is exponentially large in the number of quasiparticles.

States in this space can only be distinguished by global measurements provided quasiparticles are far apart.
SU(2)_k Non-Abelian Particles

1. Particles have topological charge \(s = 0, 1/2, 1, 3/2, \ldots, k/2 \)

 \[\text{topological charge} = \frac{1}{2} \]

2. “Fusion Rule” for adding topological charge:

 \[
 s_1 \otimes s_2 = |s_1 - s_2| \oplus \left(|s_1 - s_2| + 1 \right) \oplus \cdots \oplus \min\left(s_1 + s_2, k - (s_1 + s_2) \right)
 \]

For example:

\[
\frac{1}{2} \otimes \frac{1}{2} = 0 \oplus 1
\]

\(\rightarrow \)

Two \(\bullet \) particles can have total topological charge 0 or 1.

\(\alpha \begin{tikzpicture}
\draw[fill=green!80!black] (0,0) circle (0.3);
\draw[fill=green!80!black] (1,0) circle (0.3);
\node at (0.5,0) {0};\end{tikzpicture} \) + \(\beta \begin{tikzpicture}
\draw[fill=green!80!black] (0,0) circle (0.3);
\draw[fill=green!80!black] (1,0) circle (0.3);
\node at (0.5,0) {1};\end{tikzpicture} \)
$\mathcal{N} \to \infty$; Ordinary Spin-1/2 Particles

$\text{Dim}(N) \sim 2^N$
Non-crossing valence bond basis:

Any two particles connected by a bond form a singlet

Complete, linearly independent basis for the space of all singlet states.
Valence Bonds Basis

Nonorthogonal basis, but easy to compute with:

\[|\alpha\rangle = \]

\[|\beta\rangle = \]

\[\langle \alpha | \beta \rangle = \]

\[\langle \alpha | \beta \rangle = 2^{N_{\text{loops}} - N/2} = 2^{3-12/2} = 1/8 \]
$k = 4$

$\text{Dim}(N) \sim 3^{N/2}$
$k = 3$

$v = 12/5$ state?

$\dim(N) = \text{Fib}(N+1) \sim \phi^N$
2 = k

(k = 2

(v=5/2 state)

\[
\text{Dim}(N) = 2^{N/2-1}
\]
Quantum Dimension

Hilbert space of N particles with topological charge $\frac{1}{2}$ grows asymptotically as d^N where d is the “quantum dimension” of the particles.

\[d = 2 \cos \frac{\pi}{k + 2} \]

<table>
<thead>
<tr>
<th>k</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\sqrt{2}$</td>
</tr>
<tr>
<td>3</td>
<td>$\phi = \frac{1 + \sqrt{5}}{2}$</td>
</tr>
<tr>
<td>4</td>
<td>$\sqrt{3}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>∞</td>
<td>2</td>
</tr>
</tbody>
</table>
Valence Bonds Basis for $SU(2)_k$

Non-crossing valence bond basis:

Any two particles connected by a bond fuse to trivial topological charge 0 if brought together.

A complete, but linearly dependent basis for the space of all states with total topological charge 0.
Valence Bonds Basis for SU(2)$_k$

Again, nonorthogonal, but still easy to compute with:

\[|\alpha\rangle = \]

\[|\beta\rangle = \]

\[\langle\alpha|\beta\rangle = \]

\[\langle\alpha|\beta\rangle = d^{N_{\text{loops}}-N/2} = d^{4-12/2} = 1/d^2 \]

\[d = 2\cos\frac{\pi}{k+2} \]

Quantum Dimension
Interacting Non-Abelian Anyons

Localized quasiparticles

Topological degeneracy is lifted when quasiparticles are close together (for FQHE states, this means within a few magnetic lengths).

Assume trivial topological charge is energetically favored:

\[H = - \sum_{i,j} J_{i,j} \prod_{i,j}^{0} ; \quad J_{i,j} > 0 \]

Projection onto state of particle \(i \) and \(j \) with total topological charge 0.
Assume trivial topological charge is energetically favored:

$$H = - \sum_i J_i \Pi_i^0 ; \quad J_i > 0$$

($\Pi_i^0 \equiv \Pi_{i,i+1}^0$)
Uniform $SU(2)_k$ Chains

$k \to \infty$ Ordinary spin-1/2 AFM Heisenberg model:

$$H = -J \sum_i \prod_i^0 = -J \sum_i \left(\frac{1}{4} - S_i \cdot S_{i+1} \right)$$

Conformally invariant quantum critical model with central charge: $c=1$

Uniform $SU(2)_k$ chains can be mapped onto exactly solvable Andrews-Baxter-Forrester models which realize minimal CFTs with central charges,

$$c = 1 - \frac{6}{(k+1)(k+2)}$$

(Feiguin et al., PRL 98, 160409 (2007).)

<table>
<thead>
<tr>
<th>k</th>
<th>c</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k \to \infty$</td>
<td>$c=1$</td>
<td>Heisenberg Model</td>
</tr>
<tr>
<td>$k=3$</td>
<td>$c=\frac{7}{10}$</td>
<td>Golden Chain</td>
</tr>
<tr>
<td>$k=2$</td>
<td>$c=\frac{1}{2}$</td>
<td>Critical TFIM</td>
</tr>
</tbody>
</table>
Random SU(2)_k Chains

Given the similarity between ordinary spin and SU(2)_k particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ’94)
Random SU(2)_k Chains

Given the similarity between ordinary spin and SU(2)_k particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ’94)
Random $SU(2)_k$ Chains

Given the similarity between ordinary spin and $SU(2)_k$ particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

$$H = - \sum_i J_i \Pi_i^0$$

Diagram:

- J_i axis
- Bonds J_1, J_2, J_3
- Strongest Bond
Random SU(2)$_k$ Chains

Given the similarity between ordinary spin and $SU(2)_k$ particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ’94)

$H = - \sum_i J_i \Pi^0_i$
Random SU(2)_k Chains

Given the similarity between ordinary spin and SU(2)_k particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ’94)
Random SU(2)$_k$ Chains

Given the similarity between ordinary spin and SU(2)$_k$ particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ’94)

\[H = - \sum_i J_i \Pi_i^0 \]

Effective interaction from 2nd order perturbation theory

\[\tilde{J} = \frac{1}{2} \frac{J_1 J_3}{J_2} \]

Spin-1/2 particles
(Ma, DasGupta, Hu ’79)

Strongest Bond
Random $SU(2)_k$ Chains

Given the similarity between ordinary spin and $SU(2)_k$ particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

$$H = -\sum_i J_i \Pi_i^0$$

Effective interaction from 2^{nd} order perturbation theory

$$\tilde{J} = \frac{2 J_1 J_3}{d^2 J_2}$$

$SU(2)_k$ particles (NEB, K.Yang, PRL’07)
Random SU(2)_k Chains

Given the similarity between ordinary spin and SU(2)_k particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

\[H = - \sum_i J_i \Pi_i^0 \]

Random Singlet Phase for SU(2)_k particles: Bonds freeze into a particular non-crossing valence-bond state.

(NEB, K. Yang, PRL ’07)
Random SU(2)_k Chains

Given the similarity between ordinary spin and SU(2)_k particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

\[H = - \sum_i J_i \Pi_i^0 \]

Infinite Random Fixed Point (D. Fisher ‘94)

\[L^{1/2} \sim \ln \frac{1}{E} \quad \text{Specific Heat:} \quad C \propto \frac{1}{|\ln T|^3} \]
Random SU$(2)_k$ Chains

Given the similarity between ordinary spin and $SU(2)_k$ particles we can apply the real space RG. (Ma, DasGupta, Hu ‘79, D. Fisher ‘94)

$H = - \sum_i J_i \Pi_i^0$

Specific Heat:

$(L. Fidkowski, G. Refael, NEB, J. Moore, arxiv:0807.1123)$
Entanglement Entropy

A quantum system composed of two parts: A and B

\[\rho_A = \text{Tr}_B \left[|GS\rangle \langle GS| \right] \quad \rightarrow \quad S_A \equiv -\text{Tr} \left[\rho_A \log_2 \rho_A \right] \]

Reduced density matrix Entanglement entropy

Simple example: An SU(2) singlet bond

\[\rho_A = \frac{1}{\sqrt{2}} \left(\uparrow_A \downarrow_B - \downarrow_A \uparrow_B \right) \]

\[\rho_A = \frac{1}{2} |\uparrow_A \rangle \langle \uparrow_A | + \frac{1}{2} |\downarrow_A \rangle \langle \downarrow_A | \quad \rightarrow \quad S_A = 1 \]
Entanglement Entropy

At 1+1 dimensional conformally invariant quantum critical points, the entanglement entropy scales logarithmically with the size of region A with a universal coefficient:

\[S(L) \approx \frac{c}{3} \log_2 L \]

\[c = \text{central charge} \]

(Holzhey et al. ‘94, Calabrese & Cardy ‘04)

For uniform Heisenberg model (c=1)

For uniform critical TFIM (c=1/2)
Entanglement Entropy of Random Spin-1/2 Chains
(Refael & Moore PRL 93, 260602 (2004))

In the random singlet phase the entanglement entropy also scales logarithmically with L

$$S(L) \approx (\text{entropy per bond}) \times \frac{\ln 2}{3} \log_2 L \approx \frac{\ln 2}{3} \log_2 L$$

Avg. # of bonds leaving region of length $L \approx \frac{1}{3} \ln L = \frac{\ln 2}{3} \log_2 L$

"effective" central charge: $\tilde{c} = \ln 2$
For $SU(2)_k$ random chains the only thing that is different is the entanglement per bond.

Imagine $N \gg 1$ “singlet” pairs:

$$S_A \approx \log_2 d^N = N \log_2 d$$

Entropy per bond $= \log_2 d$
In the random singlet phase the entanglement entropy also scales logarithmically with L

\[\text{Avg. \# of bonds leaving region of length } L \approx \frac{1}{3} \ln L = \frac{\ln 2}{3} \log_2 L \]

\[S(L) \approx (\text{entropy per bond}) \times \frac{\ln 2}{3} \log_2 L \approx \frac{\ln d}{3} \log_2 L \]

“effective” central charge: $\bar{c} = \ln d$
Valence-Bond Monte Carlo
(Sandvik, PRL 95, 207203 (2005))

Idea: Project out ground state of H by repeatedly applying $-H$ to some initial valence-bond state $|S_0\rangle$

\[
(-H)^n|S_0\rangle = \sum_{i_1\cdots i_n} J_{i_1} \cdots J_{i_n} \prod_{i_1}^0 \cdots \prod_{i_n}^0 |S_0\rangle = \sum_\alpha w(\alpha) |\alpha\rangle
\]

Initial valence-bond state

Sum over “non-crossing” valence-bond states.

Weight factors $w(\alpha)$ are easy to compute and update for efficient Monte Carlo sampling. Straightforward to generalize to SU(2)$_k$ particles.
Valence-Bond Entanglement
(Alet, Capponi, Laflorencie, Matthieu, PRL 99, 117204 (2007))

For the ground state wavefunction \(|GS\rangle = \sum w(\alpha) |\alpha\rangle\)
the “valence-bond entanglement” is defined to be:

\[S_{VB}(L) = \sum_{\alpha} \frac{w(\alpha) S(L;\alpha)}{\sum_{\alpha} w(\alpha)} \]

Entanglement entropy in the valence-bond state \(|\alpha\rangle\) computed a la Refael and Moore.

Exact result for uniform chains (Jacobsen & Saleur, PRL 100, 087205 (2008))

\[S_{VB}(L) \approx \frac{4 \ln d}{\pi^2} \frac{1}{k+1} \frac{d}{\sqrt{4-d^2}} \log_2 L \]

Close to, but not exactly equal to c/3
Valence-Bond Entanglement: Uniform Case

$k \to \infty$ case first studied by Alet et al. ‘07

H. Tran, NEB, in preparation
Valence-Bond Entanglement: Uniform Case

$k \to \infty$ case first studied by Alet et al. ‘07

Exact result (Jacobsen & Saleur, PRL ’08)

H. Tran, NEB, in preparation
Valence-Bond Entanglement

(Alet, Capponi, Laflorencie, Matthieu, PRL 99, 117204 (2007))

For the ground state wavefunction $|GS\rangle = \sum w(\alpha)|\alpha\rangle$
the “valence-bond entanglement” is defined to be:

$$S_{VB}(L) = \frac{\sum_{\alpha} w(\alpha) S(L;\alpha)}{\sum_{\alpha} w(\alpha)}$$

Entanglement entropy in the valence-bond state $|\alpha\rangle$ computed a la Refael and Moore.

If bonds “freeze” on long length scales then $S_{VB}(L)$ should show the same scaling as the “true” entanglement $S(L)$ for large L.

→ For random chains expect:

$$S_{VB}(L) \approx \frac{\ln d}{3} \log_2 L$$
For random chains, how do we know bonds are “freezing”? Look at fluctuations in number of bonds leaving region of size L.
For random chains, how do we know bonds are “freezing”?

Look at fluctuations in number of bonds leaving region of size L.

\[L \]
For random chains, how do we know bonds are “freezing”? Look at fluctuations in number of bonds leaving region of size L.

![Diagram showing fluctuations in number of bonds leaving a region of size L.]
For random chains, how do we know bonds are “freezing”?

Look at fluctuations in number of bonds leaving region of size L.

![Diagram showing fluctuations in bond number](image)
For random chains, how do we know bonds are “freezing”? Look at fluctuations in number of bonds leaving region of size L.

If bonds are frozen, only fluctuations near boundary of region change the number of bonds leaving that region.

$\sigma_n^2 = \left\langle \left\langle n_L^2 \right\rangle - \left\langle n_L \right\rangle^2 \right\rangle$

Average over disorder

Bond fluctuations for particular realization of disorder

Expect σ_n^2 to be independent of L for large L if bonds freeze.
Bond Fluctuations: Signature of Freezing

\[\langle S_L^2 \rangle - \langle S_L \rangle^2 \]

Block size L

H. Tran, NEB, in preparation
Bond Fluctuations: Signature of Freezing

\[\langle \langle S_L^2 \rangle - \langle S_L \rangle^2 \rangle \]

Exact result
(Jacobsen & Saleur, PRL ’08)

Uniform chain

H. Tran, NEB, in preparation
Bond Fluctuations: Signature of Freezing

\[\langle (S_L^2 - \langle S_L \rangle) \rangle \]

- Uniform chain
- Random chain

Exact result
(Jacobsen & Saleur, PRL ’08)

H. Tran, NEB, in preparation
Valence-Bond Entanglement: Random Case

$k \rightarrow \infty$ case first studied by Alet et al. PRL ‘07

H. Tran, NEB, in preparation
Valence-Bond Entanglement: Random Case

\[S_L = \frac{\ln d}{3} \log_2 L + \text{const.} \]

\[k \to \infty \]

\[k = 3 \]

\[k = 2 \]

Block size \(L \)

H. Tran, NEB, in preparation

The \(k \to \infty \) case was first studied by Alet et al. PRL ‘07.
Conclusions

There is a close analogy between the properties of SU(2)_k non-Abelian quasiparticles and ordinary spin-1/2 particles.

Chains of interacting non-Abelian particles can enter “random singlet phases,” analogous to those arising in random spin-1/2 chains.

Universal entanglement scaling.

$$S(L) \approx \frac{\ln d}{3} \log_2 L$$