Anomalous Transport Noise in YBCO

Dale Van Harlingen (started project)
David S. Caplan (kept it going despite odds, supplied most samples and slides)
Vladimir Orlyanchik (got the experiment to work, took almost all the data)
Tom Lemberger et al. (some very nice samples)
Eduardo Fradkin (theoretical guidance)

Tony Bonetti (took early data)

Hans Hilgenkamp (oriented samples)

Funded by several NSF grants
The Generic Phase Diagram

- Stripes?
- Circulating currents?
- Preformed pairs?
- Mottish bosons?
- Some AF neutron correlations
- T-dependent resistive anisotropy in untwinned YBCO
- Messy inhomogeneous STM pictures
- Rumors of anisotropic Nernst effect
Early nanowire transport data (Bonetti 2004)

- poor characterization of onset vs. T
- No magnetic field data
- confusing data on spatial correlations
- Samples fell apart

Stripe Switching?

width ~ 100 nm
New samples

YBCO and Ca-YBCO
~300 nm thick
via Pulsed Laser Deposition
photolithographic patterns

• $R(T)$ is generally smooth
• Stable for weeks
• Sharp T_C
Standard Noise Measurement

- Frequency window ~1-200 Hz
- ~Linear current response
 - little Joule heating
- Spectrum (above background) roughly of form $1/f^\alpha$, $0.9 < \alpha < 1.2$
Unusual feature in the 1/f noise

$T_c = 38 \text{ K}$

$T_c = 85 \text{ K}$
Defining a characteristic T of the feature

- Subtract extrapolated higher temperature noise
- Look at remainder
\(T_p \) Frequency Dependence

- \(T_p(f) \) fits Arrhenius dependence

- \(T_p(f) \) shows ordinary activated dependence of frequency on \(T \)

- Unlike any glass or phase transition

- Just a boring feature in a distribution?

\[f_p = f_0 e^{-\Delta E/k_B T} \]
\[\Delta E \sim 0.4 eV \]
Is the peak associated with electronic correlations?

Decreased doping \rightarrow more stripe anisotropy

T_P not doping dependent, not a phase transition,
Not a sharp crossover, not related to T^*

But peak amplitude is sharply doping dependent

Do the low-T qualitative features look like anything special?
Low Magnetic Field Dependence

- 2 Samples separated by 15 µm
- Sweep H-field sinusoidally, 0 to 1.5 kG
- Noise power follows if H in-plane (magnetoresistance <1%)
- Not due to microphonics.
- Choice of metastable states!
- T-dependence?
Low Magnetic Field Dependence

Becomes more irregular at higher T
Low Magnetic Field Dependence

H dependence gone above 245 K T
Metastable noise properties

• Samples both lost low-H dependence of noise

• Change in noise power -- only below ~ 230K

• No change in R (<< 1%)

Noise below 240 K is qualitatively different
High Magnetic Field Dependence
Present in most samples, only below 240K

i. Measure noise without field
ii. Apply 6.3 Tesla out-of-plane
iii. Remove field

Distinct magnetic noise hysteresis
?Related to Kerr memory seen by Kapitulnik?
Relaxation of Magnetic effects after field application

- Long time sweeps, \(\frac{dT}{dt} = 0.3 \text{ K/min} \)
- Up to room temperature and down to 160K
- Total time > 18 hours

Effects below 250K,
- Almost none above 250K

Noise below ~250 K is qualitatively different
High Magnetic Field Dependence

Only out-of-plane

YBCO sample

H out of plane

H in-plane

180K to 290K
290K to 130K #1
290K to 130K #2

\(S \times R/R^2 \) (10^{-29} m^4)

\(S \times R/R^2 \) (10^{-29} m^4)
High Magnetic Field Dependence
Some memory effects

- Noise increases for both positive and negative H out-of-plane
- No effect for H in-plane
Large fluctuators ($\delta R/R > 10^{-5}$) seen in almost every sample only at $T < \sim 180K$.

Point-like defect in homogeneous sample would give $\delta R/R < \sim 10^{-8}$

Implies either:
• large coherently fluctuating regions
Or
• Strongly inhomogeneous conduction

Either one suggests stripes

Ordinary Arrhenius kinetics
Individual Fluctuator Thermodynamics

\[
\frac{r}{\text{time}_{\uparrow}} = \exp \left[\frac{\Delta F}{k_B T} \right]
\]

\[
\Delta F = k_B T \ln(r)
\]

\[
\Delta \sigma = -\frac{1}{k_B} \left(\frac{d \Delta F}{dT} \right)_H
\]

\[
\Delta U = \Delta F + T \Delta \sigma
\]

Scalar quantities (U, S) change ->
Not pure rotations

Small changes in scalars suggest almost rotations, not fluctuations between distinct phases

Like domain rotations in manganites in asymmetrical environment
Resistivity Fluctuation Tensor Properties

\[S = \frac{\langle \text{Det}(\rho_2) \rangle}{\langle \text{Tr}(\rho_2^2) \rangle} \quad -1 \leq S \leq 1 \]

- \(S \approx 0 \). NOT pure rotations.
- More like mayonnaise than nematic?
Stripes are supposed to align with twins

Possible role of twin anisotropy?

“Untwinned” sample ~85% oriented

Noise similar but not identical along two orientations
Conclusion: A dilemma

Below ~ 250 K the noise shows qualitative features expected for a disordered collective state (e.g. pinned stripes)
1. large fluctuators
2. memory and aging effects
 + a pointer toward electronic correlations (as opposed to structural ones)
3. magnetic sensitivity (with memory)

But the onset of such regimes with noise from disordered collective states (spinglasses, pinned SDWs, relaxor ferroelectrics in all other cases looks non-Arrhenius (phase or glass transitions)

This onset at ~T_P looks like just a maximum in a distribution of fixed barrier heights?

What gives?
Possible Noise Mechanism: dynamic charge stripe domains

- If indeed due to stripe order, something must be slowing the dynamics
- We suggest pinning to defects
Toward a model

Usually spinglass or pinned SDW etc sets in with fully quenched chemical disorder.

T* is pretty high.

In some places, O can move around in YBCO at low T: 0.4 eV activation energy!

David Payne, 2003

Maybe below 250 K we’re seeing stripes switching around on an essentially fixed background disorder.

Above 250 K we’re seeing noise of a pattern partially averaged over some un-quenched disorder, mobile for our (f, T).
Temperature Dependent Hysteresis
Of low frequency dynamics

• Internal friction measurement (Cannelli 1992)

• Low-f internal friction picked up a new feature after cooling to T_C

Other IF measurements pick up a variety Of features in our (f,T) range
Dutta-Horn Model

\[-\partial \ln S_R/\partial \ln \omega = 1 + \frac{1}{\ln(\omega \tau_0/2\pi)}(\partial \ln S_R/\partial \ln T - 1)\]
Eduardo’s picture: charge stripe domains

- Charge stripes: good AF state has wrong charge density, Coulomb repulsion limits range of charge separation → small-scale inhomogeneity
 - Channels with higher carrier density → anisotropic transport

Ando (2002)

- Like other density waves pinned by disorder, should show low-frequency switching between metastable states.
• LSCO shows anisotropy in magnetic susceptibility -- Lavrov et al. PRL (2001)
• Can align twins with high enough field
• suprisingly mobile twins, i.e. low Ea
Resistance and Doping (Ando 2002)

- PG shows up in $\rho_{ab}(T)$
- S-shaped curvature
- Universal to cuprates

There is underlying order associated with the PG

- STM shows inhomogeneities
- Neutron and X-ray scattering show AF and charge ordering
Noise Frequency Dependence

• Arrhenius dependence

\[f_p = f_0 e^{-\Delta E/k_BT} \]

\[\Delta E \sim 0.4\,eV \]

Transport Diffusion Measurement

• Only in “grainy” YBCO

• \(E_a = 0.4\,\text{eV} \)

• Associated with extended defects (possibly twins)

Payne (1993)