Perspectives in Doped Topological Materials and Superconductivity

Pedro L S Lopes
UIUC - 10/21/2015
Take away message:
Take away message:

- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity
Take away message:
- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity

Outline
Take away message:

- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity

Outline

• A couple of examples on vortex physics;
Take away message:
- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity

Outline

• A couple of examples on vortex physics;
• Superconductivity in doped topological insulators
 - vortex bound modes and vortex dynamics;
Take away message:
- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity

Outline

• A couple of examples on vortex physics;
• Superconductivity in doped topological insulators
 - vortex bound modes and vortex dynamics;
• Topological superconductivity (doped WSM)
 - vortices, anomalies and ground states;
Take away message:
- Doped topological matter provides a simple metallic platform for unconventional phenomena in superconductivity

Outline

- A couple of examples on vortex physics;
- Superconductivity in doped topological insulators
 - vortex bound modes and vortex dynamics;
- Topological superconductivity (doped WSM)
 - vortices, anomalies and ground states;
- Future advances: tilted Weyl cones?
Non-interacting topological matter
Non-interacting topological matter

- Non-interacting gapped systems: featureless?

\[E \]

\[k \]
Non-interacting topological matter

- Non-interacting gapped systems: featureless?
- Topology and surface gapless modes

\[E \]

\[k \]
Non-interacting topological matter

- Non-interacting gapped systems: featureless?
- Topology and surface gapless modes
Non-interacting topological matter

- Non-interacting gapped systems: featureless?
- Topology and surface gapless modes

Ryu et al. (2009)
Kitaev (2009)
Non-interacting topological matter

- Non-interacting gapped systems: featureless?
- Topology and surface gapless modes

Ryu et al. (2009)
Kitaev (2009)
Doped Topological Insulators: Superconductivity
Doped Topological Insulators: Superconductivity

- Exploit the bulk band topology
Doped Topological Insulators: Superconductivity

- Exploit the bulk band topology
- Exploit physics of defects in the novel state
Doped Topological Insulators: Superconductivity

- Exploit the bulk band topology
- Exploit physics of defects in the novel state

Doped TI + SC
Doped Superconducting Topological Insulators: Realization

- An example: $\text{Cu}_x\text{Bi}_2\text{Se}_3$ (SC at $x=0.12$)

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

- An example: $\text{Cu}_x\text{Bi}_2\text{Se}_3$ (SC at $x=0.12$)

$$T_c = 3.8K \approx 0.3\,\text{meV}$$

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

- An example: $\text{Cu}_x\text{Bi}_2\text{Se}_3$ (SC at $x=0.12$)

\begin{align*}
T_c &= 3.8K \approx 0.3\text{meV} \\
\Delta &\approx 0.6\text{meV}
\end{align*}

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

- An example: $\text{Cu}_x\text{Bi}_2\text{Se}_3$ (SC at $x=0.12$)

\[T_c = 3.8K \approx 0.3meV \]

\[\Delta \approx 0.6meV \]

\[\xi_0 \approx 2000\text{Å} \]

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

- An example: $\text{Cu}_x\text{Bi}_2\text{Se}_3$ (SC at $x=0.12$)

\[T_c = 3.8 K \approx 0.3 \text{meV} \]
\[\Delta \approx 0.6 \text{meV} \]
\[\xi_0 \approx 2000 \text{Å} \]

Surface electronic behaviour strongly sensitive to doping:

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

- An example: Cu$_x$Bi$_2$Se$_3$ (SC at x=0.12)

\[
T_c = 3.8K \approx 0.3\text{meV} \\
\Delta \approx 0.6\text{meV} \\
\xi_0 \approx 2000\text{Å}
\]

Surface electronic behaviour strongly sensitive to doping:
- Hexagonal warping of Fermi surface of surface states

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: Realization

• An example: \(\text{Cu}_x \text{Bi}_2\text{Se}_3 \) (SC at \(x=0.12 \))

\[
T_c = 3.8K \approx 0.3\text{meV} \\
\Delta \approx 0.6\text{meV} \\
\xi_0 \approx 2000\text{Å}
\]

Surface electronic behaviour strongly sensitive to doping:
• Hexagonal warping of Fermi surface of surface states
• Strong renormalisation of Fermi velocities

Hor et al. (2009) Wray et al. (2011)
Doped Superconducting Topological Insulators: vortex bound modes

- Minimal model

\[\mathcal{H}_{kdG}^{BdG} = \begin{bmatrix}
H_{k}^{TI} - \mu & \Delta \\
\Delta^* & \mu - H_{k}^{TI}
\end{bmatrix} \]

Hosur et al. (2011) **PLSL** and Ghaemi (2015)
Doped Superconducting Topological Insulators: vortex bound modes

- Minimal model

\[\mathcal{H}_{\mathbf{k}}^{BdG} = \begin{bmatrix} H_{\mathbf{k}}^{TI} - \mu & \Delta \\ \Delta^* & \mu - H_{\mathbf{k}}^{TI} \end{bmatrix} \]

\[H_{\mathbf{k}}^{TI} = v_D \tau_x \sigma \cdot \mathbf{k} + \tau_z (m - \epsilon k^2) \]

Hosur et al. (2011) PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: vortex bound modes

- Minimal model

\[
\mathcal{H}^{BdG}_{k} = \begin{bmatrix}
H^TI_k - \mu & \Delta \\
\Delta^* & \mu - H^TI_k
\end{bmatrix}
\]

\[
H^TI_k = \nu_D \tau_x \sigma \cdot k + \tau_z (m - \epsilon k^2)
\]

\[
\Delta \rightarrow |\Delta (r)| e^{i\theta}
\]

Hosur et al. (2011) PSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: vortex bound modes

- Minimal model

\[
\mathcal{H}^{BdG}_k = \begin{bmatrix}
H_{TI}^k - \mu & \Delta \\
\Delta^* & \mu - H_{TI}^k
\end{bmatrix}
\]

\[
H_{TI}^k = v_D \tau_x \sigma \cdot k + \tau_z (m - \epsilon k^2)
\]

\[
\Delta \rightarrow |\Delta (r)| e^{i \theta}
\]

\[
E_{l}^{\pm} = \frac{\Delta^2}{E_F} \left(l \mp \frac{1}{2} \pm \frac{\Phi (\mu)}{2\pi} \right)
\]

Hosur et al. (2011) PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: vortex bound modes

- Minimal model

\[\mathcal{H}_k^{BdG} = \begin{bmatrix} H_{TI}^k - \mu & \Delta \\ \Delta^* & \mu - H_{TI}^k \end{bmatrix} \]

\[H_{TI}^k = v_D \tau_x \sigma \cdot k + \tau_z (m - \epsilon k^2) \]

\[\Delta \rightarrow |\Delta(r)| e^{i\theta} \]

\[E_l^\pm = \frac{\Delta^2}{E_F} \left(l \mp \frac{1}{2} \pm \frac{\Phi(\mu)}{2\pi} \right) \]

Hosur et al. (2011) PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: vortex bound modes

- Vortex phase transition

Hosur et al. (2011)
Doped Superconducting Topological Insulators: vortex bound modes

- Vortex phase transition

Hosur et al. (2011)
Doped Superconducting Topological Insulators: vortex bound modes

- Vortex phase transition

- Vortex behaves effectively as a Kitaev chain

Hosur et al. (2011)
Doped Superconducting Topological Insulators: vortex bound modes

- Vortex phase transition

\[\mathcal{H}_l^{\text{vrtx}} = \begin{bmatrix} E_l^+ - \tilde{v}_l \partial_z^2 & -i \tilde{\Delta}_l \partial_z \\ -i \tilde{\Delta}_l \partial_z & -E_{-l}^+ - \tilde{v}_l \partial_z^2 \end{bmatrix} \]

- Vortex behaves effectively as a Kitaev chain

Hosur et al. (2011)

PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- DOS schematics
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- DOS schematics

![Graph showing the SC gap](image)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- DOS schematics

![Graph showing DOS schematics with SC gap and CdG mini-gap](image)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- Enhance signatures by looking at effects from vortex quantum dynamics

\[\Delta (\mathbf{r} - \mathbf{R}(\tau)) \approx \Delta (\mathbf{r}) - \partial_{\mathbf{r}} \Delta (\mathbf{r}) \cdot \mathbf{R}(\tau) \]

\[S_{\text{vrtx}} = \frac{m_v}{2} \int \frac{d\omega}{2\pi} \mathbf{R}^\dagger(i\omega) \begin{pmatrix} \omega^2 + \omega_0^2 & \omega_c \omega \\ -\omega_c \omega & \omega^2 + \omega_0^2 \end{pmatrix} \mathbf{R}(i\omega) \]

Bartosch and Sachdev (2006)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- Enhance signatures by looking at effects from vortex quantum dynamics

\[\Delta (r - R(\tau)) \approx \Delta(r) - \partial_r \Delta(r) \cdot R(\tau) \]

\[S_{vrtx} = \frac{m_v}{2} \int \frac{d\omega}{2\pi} R^\dagger(i\omega) \begin{pmatrix} \omega^2 + \omega_0^2 & \omega_c \omega \\ -\omega_c \omega & \omega^2 + \omega_0^2 \end{pmatrix} R(i\omega) \]

Harmonic trap

Bartosch and Sachdev (2006)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- Enhance signatures by looking at effects from vortex quantum dynamics

$$\Delta (r - R(\tau)) \approx \Delta (r) - \partial_r \Delta (r) \cdot R(\tau)$$

$$S_{\text{vrtn}} = \frac{m_v}{2} \int \frac{d\omega}{2\pi} R^\dagger(i\omega) \begin{pmatrix} \omega^2 + \omega_0^2 & \omega_c \omega \\ -\omega_c \omega & \omega^2 + \omega_0^2 \end{pmatrix} R(i\omega)$$

Magnus force

Harmonic trap

Bartosch and Sachdev (2006)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- Enhance signatures by looking at effects from vortex quantum dynamics

\[\Delta (r - R(\tau)) \approx \Delta (r) - \partial_r \Delta (r) \cdot R(\tau) \]

\[S_{vrtx} = \frac{m_v}{2} \int \frac{d\omega}{2\pi} R^\dagger (i\omega) \begin{pmatrix} \omega^2 + \omega_0^2 & \omega_c \omega \\ -\omega_c \omega & \omega^2 + \omega_0^2 \end{pmatrix} R (i\omega) \]

- New energy scales!

Bartosch and Sachdev (2006)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition

- Enhance signatures by looking at effects from vortex quantum dynamics

\[\Delta (\mathbf{r} - \mathbf{R}(\tau)) \approx \Delta (\mathbf{r}) - \partial_{\mathbf{r}} \Delta (\mathbf{r}) \cdot \mathbf{R}(\tau) \]

\[S_{\text{vrtx}} = \frac{m_v}{2} \int \frac{d\omega}{2\pi} R^{\dagger}(i\omega) \begin{pmatrix} \omega^2 + \omega_0^2 & \omega_c \omega \\ -\omega_c \omega & \omega^2 + \omega_0^2 \end{pmatrix} R(i\omega) \]

- Magnus force
- Harmonic trap

- New energy scales!
- Study how these renormalize bound modes energies

Bartosch and Sachdev (2006)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition with LDOS

- Enhance signatures by looking at effects from dynamics

\[\omega - E_{l}^{\pm} - \Sigma_{l}^{\pm}(\omega) = 0 \]
Doped Superconducting Topological Insulators: Measuring the vortex phase transition with LDOS

- Enhance signatures by looking at effects from dynamics

\[\omega - \mathcal{E}_l^{\pm} - \Sigma_l^{\pm}(\omega) = 0 \]

- At \(r=0 \), only \(l=0,1 \) contribute

PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition with LDOS

- Enhance signatures by looking at effects from dynamics

\[\omega - E_l^{\pm} - \Sigma_l^{\pm}(\omega) = 0 \]

- At \(r=0 \), only \(l=0,1 \) contribute
- Local PH asymmetry

PLSL and Ghaemi (2015)
Doped Superconducting Topological Insulators: Measuring the vortex phase transition with LDOS

- Enhance signatures by looking at effects from dynamics

\[\omega = E_l^{\pm} - \Sigma_l^{\pm}(\omega) = 0 \]

- At \(r=0 \), only \(l=0,1 \) contribute
- Local PH asymmetry

New energy scale

PLSL and Ghaemi (2015)
Superconducting Doped Topological Insulators

PLSL and Ghaemi (2015)
Superconducting Doped Topological Insulators

Summary: vortices in doped TIs
Summary: vortices in doped TIs

• Vortex phase transition;
Superconducting Doped Topological Insulators

Summary: vortices in doped TIs

• Vortex phase transition;
• Radially dependent LDOS profile for vortex;
Summary: vortices in doped TIs

- Vortex phase transition;
- Radially dependent LDOS profile for vortex;
- PH asymmetric LDOS at vortex center;
Superconducting Doped Topological Insulators

Summary: vortices in doped TIs

- Vortex phase transition;
- Radially dependent LDOS profile for vortex;
- PH asymmetric LDOS at vortex center;
- Vortex quantum dynamics - maybe exposes the topological phase transition?
Superconducting Doped Topological Insulators

Summary: vortices in doped TIs

- Vortex phase transition;
- Radially dependent LDOS profile for vortex;
- PH asymmetric LDOS at vortex center;
- Vortex quantum dynamics - maybe exposes the topological phase transition?

Learning how to project the vortex mode into a Kitaev chain allows one to envisage how to apply this mechanism in 1D scenarios where energy scales might be more friendly

PLSL and Ghaemi (2015)
Topological Superconductivity (TRI)

- TSC: Class DIII in 3+1D
Topological Superconductivity (TRI)

- TSC: Class DIII in 3+1D
Topological Superconductivity (TRI)

- TSC: Class DIII in 3+1D
- Minimal model: He3B
Topological Superconductivity (TRI)

- TSC: Class DIII in 3+1D

- Minimal model: He3B

\[
H = \frac{1}{2} \sum_{\mathbf{k}} \begin{pmatrix} c_{\mathbf{k}}^\dagger, c_{-\mathbf{k}} \end{pmatrix} \begin{pmatrix} h_{\mathbf{k}} & \Delta_{\mathbf{k}}^\dagger \\ \Delta_{\mathbf{k}} & -h_{\mathbf{-k}}^T \end{pmatrix} \begin{pmatrix} c_{\mathbf{k}} \\ c_{\mathbf{-k}}^\dagger \end{pmatrix}
\]

\[
\begin{array}{cccc|ccc}
\text{Symmetry} & \text{AZ} & \Theta & \Xi & \Pi & 1 & 2 & 3 \\
A & 0 & 0 & 0 & 0 & Z & 0 & Z \\
AIII & 0 & 0 & 1 & Z & 0 & Z & 0 \\
AII & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
CII & 0 & 1 & 0 & Z & Z & 0 & 0 \\
D & 1 & 1 & 1 & Z & 0 & 0 & 0 \\
DIII & -1 & 1 & 1 & Z & Z & Z & Z \\
AIII & -1 & 0 & 0 & 0 & Z & Z & Z \\
\end{array}
\]
Topological Superconductivity (TRI)

- **TSC: Class DIII in 3+1D**
- **Minimal model: He3B**

\[
H = \frac{1}{2} \sum_{\mathbf{k}} \begin{pmatrix} c_{\mathbf{k}}^\dagger, c_{-\mathbf{k}} \end{pmatrix} \begin{pmatrix} h_{\mathbf{k}} & \Delta_{\mathbf{k}} \\ \Delta_{\mathbf{k}}^\dagger & -h_{-\mathbf{k}}^T \end{pmatrix} \begin{pmatrix} c_{\mathbf{k}} \\ c_{-\mathbf{k}}^\dagger \end{pmatrix}
\]

\[
h_{\mathbf{k}} = \frac{\mathbf{k}^2}{2m} - \mu + \alpha \mathbf{\sigma} \cdot \mathbf{k}
\]
Topological Superconductivity (TRI)

- TSC: Class DIII in 3+1D
- Minimal model: He3B

\[
H = \frac{1}{2} \sum_k \left(\begin{array}{c} c_k^\dagger, c_{-k} \end{array} \right) \left(\begin{array}{cc} h_k & \Delta_k^\dagger \\ \Delta_k & -h^T_{-k} \end{array} \right) \left(\begin{array}{c} c_k \\ c_{-k}^\dagger \end{array} \right)
\]

\[
h_k = \frac{k^2}{2m} - \mu + \alpha \sigma \cdot k
\]

\[
\Delta_k = i\Delta_0 \sigma_y \sigma \cdot k.
\]
Doped Weyl SM:
Platform for Topological SC

• 2 Fermi surfaces: project!
Doped Weyl SM: Platform for Topological SC

- 2 Fermi surfaces: project!
- Minimal model = SC gapped doped Weyl semi-metals

\[H = \sum_i \psi_i^\dagger (v_i \mathbf{p} \cdot \mathbf{\sigma} - \mu_i) \psi_i + \Delta_i \psi_i \sigma_y \psi_i + H.c. \]
Doped Weyl SM: Platform for Topological SC

• 2 Fermi surfaces: project!
• Minimal model = SC gapped doped Weyl semi-metals

\[
H = \sum_i \psi_i^\dagger \left(v_i p \cdot \sigma - \mu_i \right) \psi_i + \Delta_i \psi_i \sigma_y \psi_i + H.c.
\]

• Topological invariant

\[
N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i)
\]

Qi et al. (2010)
Class DIII TSC: Effective action, chiral vortices, anomalies

Qi et al. (2012)
Class DIII TSC:
Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i) \]

Qi et al. (2012)
Class DIII TSC:
Effective action, chiral vortices, anomalies

\[
N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i)
\]

Qi et al. (2012)
Class DIII TSC:
Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i) \]

SC phases from each Fermi surface must deconfine at surfaces

Qi et al. (2012)
Class DIII TSC: Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i) \]

SC phases from each Fermi surface must deconfine at surfaces

\[
S_{\text{eff}} [A] = \int_x \left[\frac{1}{2} \frac{\varepsilon^\sigma_{\mu \lambda \nu}}{8\pi^2} \partial_\sigma (\theta_L - \theta_R) A_\mu \partial_\lambda A_\nu + J \cos (\theta_L - \theta_R) \right]
\]

Qi et al. (2012)
Class DIII TSC: Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i) \]

SC phases from each Fermi surface must deconfine at surfaces

\[S_{eff} [A] = \int_x \left[\frac{1}{2} \frac{\epsilon^{\sigma\mu\lambda\nu}}{8\pi^2} \partial_\sigma (\theta_L - \theta_R) A_\mu \partial_\lambda A_\nu + J \cos (\theta_L - \theta_R) \right] \]

Qi et al. (2012)
Class DIII TSC: Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_i C_{1i} \text{sgn} (\Delta_i) \]

SC phases from each Fermi surface must deconfine at surfaces

\[S_{eff} [A] = \int_x \left[\frac{1}{2} \frac{\epsilon^{\sigma \mu \lambda \nu}}{8\pi^2} \partial_\sigma (\theta_L - \theta_R) A_\mu \partial_\lambda A_\nu + J \cos (\theta_L - \theta_R) \right] \]

- Surfaces of TSCs may bind vortices in the phase of a single Fermi surface

Qi et al. (2012)
Class DIII TSC:
Effective action, chiral vortices, anomalies

\[N = \frac{1}{2} \sum_{i} C_{1i} \text{sgn} (\Delta_i) \]

SC phases from each Fermi surface must deconfine at surfaces

\[S_{\text{eff}} [A] = \int_x \left[\frac{1}{2} \frac{\epsilon^\sigma \mu \lambda \nu}{8\pi^2} \partial_\sigma (\theta_L - \theta_R) A_\mu \partial_\lambda A_\nu + J \cos (\theta_L - \theta_R) \right] \]

- Surfaces of TSCs may bind vortices in the phase of a single Fermi surface

\[\text{Chiral vortices} \]

Qi et al. (2012)
Class DIII TSC: Incurable anomalies?!

\[\delta_1 = \frac{\Delta^2}{E_F} \]
Class DIII TSC: Incurable anomalies?!

- Majorana chiral modes

\[N_\nu = \sum_i C_{1,\nu} N_i \]

\[\delta_1 = \frac{\Delta^2}{E_F} \]
Class DIII TSC: Incurable anomalies?!

- Majorana chiral modes

\[N_\nu = \sum_i C_{1,i} N_i \]

- Effective action: (chiral) vortex current inflow under parallel E field

\[\langle J^\mu \rangle = \frac{1}{2} \frac{e}{8\pi^2} \epsilon^{\mu\nu\lambda\rho} \partial_\nu (\theta_R - \theta_L) F_{\lambda\rho} \]
Class DIII TSC: Incurable anomalies?!

- Majorana chiral modes

\[N_v = \sum_i C_{1,i} N_i \]

- Effective action: (chiral) vortex current inflow under parallel E field

\[\langle J^\mu \rangle = \frac{1}{2} \frac{e}{8\pi^2} \epsilon_{\mu\nu\lambda\rho} \partial_\nu (\theta_R - \theta_L) F_{\lambda\rho} \]

- But vortex modes are neutral! (no Callan-Harvey)
Class DIII TSC: Cooper pair anomalous pumping?

• A possible escape route: condensate reabsorption of pumped charge

\[\partial_{\mu} \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (\mathbf{x}) \right] F_{0z} \]
Class DIII TSC: Cooper pair anomalous pumping?

- A possible escape route: condensate reabsorption of pumped charge

\[
\partial_\mu \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (x) \right] F_{0z}
\]

\[
Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dtdz}{2\pi} E_z
\]
Class DIII TSC: Cooper pair anomalous pumping?

- A possible escape route: condensate reabsorption of pumped charge

\[
\partial_\mu \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (x) \right] F_{0z}
\]

\[
Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dt \, dz}{2\pi} E_z = 2e
\]
Class DIII TSC: Cooper pair anomalous pumping?

- A possible escape route: condensate reabsorption of pumped charge

\[
\partial_\mu \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (x) \right] F_{0z}
\]

\[
Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dt \, dz}{2\pi} E_z = 2e
\]
Class DIII TSC: Cooper pair anomalous pumping?

- A possible escape route: condensate reabsorption of pumped charge

\[\partial_\mu \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (x) \right] F_{0z} \]

\[Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dt dz}{2\pi} E_z = 2e \]

- Unconventional quantization conditions
Class DIII TSC: Cooper pair anomalous pumping?

• A possible escape route: condensate reabsorption of pumped charge

\[
\partial_\mu \langle J^\mu \rangle = \frac{1}{2} \frac{e}{2\pi} \left[\delta^2 (x) \right] F_{0z}
\]

\[
Q (t_f) - Q (t_i) = \frac{1}{2} e \int \frac{dt dz}{2\pi} E_z = 2e
\]

• Unconventional quantization conditions

• Adopt vortex linking picture
Class DIII TSC: Cooper pair anomalous pumping?

\[Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dtdz}{2\pi} E_z \]

- Unconventional quantization conditions
- Adopt vortex linking picture
Class DIII TSC: Cooper pair anomalous pumping?

\[Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dtdz}{2\pi} E_z = \frac{1}{2} \frac{\Delta t \Phi_B}{2\pi} \]

- Unconventional quantization conditions
- Adopt vortex linking picture
Class DIII TSC: Cooper pair anomalous pumping?

\[Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dt \, dz}{2\pi} E_z = \frac{1}{2} \frac{\Delta t \Phi_B}{2\pi} \]

- Unconventional quantization conditions
- Adopt vortex linking picture
Class DIII TSC: Cooper pair anomalous pumping?

\[Q(t_f) - Q(t_i) = \frac{1}{2} e \int \frac{dt dz}{2\pi} E_z = \frac{1}{2} \frac{\Delta t \Phi_B}{2\pi} \]

- Unconventional quantization conditions
- Adopt vortex linking picture

- Majorana chiral modes are not pumped by electric field but gather non-trivial phases upon vortex linking
Class DIII TSC: Vortex linking and JJs

• Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

Fendley et al. (2009)
Class DIII TSC: Vortex linking and JJs

- Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

\[H_{loop} = \int_0^{2\pi} d\theta \gamma i \partial_x \gamma \]
Class DIII TSC: Vortex linking and JJs

- Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

\[H_{\text{loop}} = \int_{0}^{2\pi} d\theta \gamma i\partial_x \gamma \]

Fendley et al. (2009)
Class DIII TSC: Vortex linking and JJs

- Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

$$H_{\text{loop}} = \int_{0}^{2\pi} d\theta \gamma i \partial_{x} \gamma$$
Class DIII TSC: Vortex linking and JJs

- Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

\[H_{\text{loop}} = \int_{0}^{2\pi} d\theta \gamma i \partial_x \gamma \]

\[S = v \int d^2x \left[i\gamma_R \partial_+ \gamma_R + i\gamma_L \partial_- \gamma_L \right] \]

Fendley et al. (2009)
Class DIII TSC: Vortex linking and JJs

• Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junction

Single squashed Majorana loop description:

\[H_{\text{loop}} = \int_0^{2\pi} d\theta \gamma_i \partial_x \gamma \]

\[S = v \int d^2 x \left[i\gamma_R \partial_+ \gamma_R + i\gamma_L \partial_- \gamma_L \right] \]

\[L_b = -iav\gamma_{1L}(0) \gamma_{1R}(0) + ibv\gamma_{1L}(L) \gamma_{1R}(L) \]

Fendley et al. (2009)
Class DIII TSC: Vortex linking and JJs

• Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junctions

Double squashed Majorana loop description:
Class DIII TSC: Vortex linking and JJs

• Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junctions.

Double squashed Majorana loop description:

\[\psi_R = \frac{\gamma_{1R} + i\gamma_{2R}}{\sqrt{2}} \quad \text{...} \]
Class DIII TSC: Vortex linking and JJs

- Linking of a pair of chiral Majorana loops is equivalent to evolving the SC phase across a QSH edge Josephson junctions

Double squashed Majorana loop description:

\[
\psi_R = \frac{\gamma_{1R} + i\gamma_{2R}}{\sqrt{2}} \quad ...
\]

\[
H_{2\text{loop}} = v \frac{1}{2} \int d^2 x \Psi^\dagger \left[-i \rho_z \tau_z \partial_x + \rho_x \Delta \right] \Psi
\]

\[
\Delta = e^{-i\varphi_L} \delta(x - L) - e^{-i\varphi_0} \delta(x)
\]

\[
\Psi = \left(\psi_R, \psi_L, -\psi_L^\dagger, \psi_R^\dagger \right)^T
\]
Class DIII TSC: Vortex linking and JJs

- JJs+QSH edge+interactions = Z_4 fractional J effect

- Results can be almost directly imported to our case

Zhang, Kane (2014)
Class DIII TSC: Summary

- Interplay of SC and multiple topological Fermi surfaces;
- Real space surfaces may deconfine the SC phases from the different FSs;
- Anomalous EM;
- Only cure: Cooper pair pumping;
- Anomalies, vortex linking and JJs at QSH edges are intertwined in this problem;
Future prospects:
New topological platforms for SC
Future prospects:
New topological platforms for SC

• A little speculation: tilted Weyl cones
Future prospects: New topological platforms for SC

• A little speculation: tilted Weyl cones

Soluyanov et al. (2015)
Future prospects: New topological platforms for SC

- A little speculation: tilted Weyl cones

\[H(k) = \sum_{i,j} k_i A_{ij} \sigma_j \]
\[i = 1, 2, 3 \]
\[j = 0, 1, 2, 3 \]
Future prospects: New topological platforms for SC

- A little speculation: tilted Weyl cones

\[H(\mathbf{k}) = \sum_{i,j} k_i A_{ij} \sigma_j \]

\(i = 1, 2, 3 \)
\(j = 0, 1, 2, 3 \)

- Weyl points are located at the touching points of electron-hole pockets
- Finite density of states even if chemical potential tuned to the Fermi point. (stronger screening than in regular WSM)

Soluyanov et al. (2015)
Conclusions
Conclusions

- SCs with normal phases stemming from doped TIs or WSMs display unusual physics for electronic modes bound to vortices;
Conclusions

• SCs with normal phases stemming from doped TIs or WSMs display unusual physics for electronic modes bound to vortices;
• For SC doped TIs, the energy profile of the LDOS is spatial dependent and vortex dynamics may aid in the verification of vortex topological phase transitions;
Conclusions

• SCs with normal phases stemming from doped TIs or WSMs display unusual physics for electronic modes bound to vortices;
• For SC doped TIs, the energy profile of the LDOS is spatial dependent and vortex dynamics may aid in the verification of vortex topological phase transitions;
• For TSCs, axionic effective field theories imply gauge violations which cannot be canceled by standard arguments. Possible ground state degeneracies may solve this enforcing quantum pumping of Cooper pairs;
Conclusions

• SCs with normal phases stemming from doped TIs or WSMs display unusual physics for electronic modes bound to vortices;
• For SC doped TIs, the energy profile of the LDOS is spatial dependent and vortex dynamics may aid in the verification of vortex topological phase transitions;
• For TSCs, axionic effective field theories imply gauge violations which cannot be canceled by standard arguments. Possible ground state degeneracies may solve this enforcing quantum pumping of Cooper pairs;
• A new generation of metallic systems is being developed in which novel SC phases might find new platforms to realize;
Class DIII TSC: Vortex linking and JJs

\[\varphi = \pi \]

\[\varphi = \frac{\pi}{2} \]

\[\varphi = 0 \]
Class DIII TSC: Vortex linking and JJs

- Different superconducting phases across the JJ indeed correspond to different boundary conditions;
Class DIII TSC: Vortex linking and JJs

• Different superconducting phases across the JJ indeed correspond to different boundary conditions;
• Many body spectrum of the JJ imply 4-fold periodicity as function of the SC phase difference at the JJ in the presence of interactions.
Class DIII TSC: Vortex structures

\[\Delta \theta = \pi \quad \Delta \theta = 0 \]
Non-interacting topological matter: Classification

• Topological defects and other gapless modes

\[h_{ij} \rightarrow \mathcal{H}(k, r) \]
Non-interacting topological matter: Classification

- Topological defects and other gapless modes

<table>
<thead>
<tr>
<th></th>
<th>d=1</th>
<th>d=2</th>
<th>d=3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D=0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D=1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D=2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$$ h_{ij} \rightarrow \mathcal{H}(k, r) $$
Non-interacting topological matter: Classification

• Gapless bulk: protected Fermi surfaces

\[p = d - d_{FS} \]
Non-interacting topological matter: Classification

- Gapless bulk: protected Fermi surfaces

\[p = d - d_{FS} \]

<table>
<thead>
<tr>
<th>FS1</th>
<th>p=8</th>
<th>p=1</th>
<th>p=2</th>
<th>p=3</th>
<th>p=4</th>
<th>p=5</th>
<th>p=6</th>
<th>p=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>FS2</td>
<td>d-1</td>
<td>d-2</td>
<td>d-3</td>
<td>d-4</td>
<td>d-5</td>
<td>d-6</td>
<td>d-7</td>
<td>d-8</td>
</tr>
<tr>
<td>TI/TSC</td>
<td>A</td>
<td>AI</td>
<td>BDI</td>
<td>D</td>
<td>DIII</td>
<td>AII</td>
<td>C</td>
<td>CI</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>AII</td>
<td>Z</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>CII</td>
<td>Z</td>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2Z</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>0</td>
<td>0</td>
<td>2Z</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>DIII</td>
<td>2Z</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>2Z</td>
<td>Z</td>
</tr>
<tr>
<td></td>
<td>AII</td>
<td>0</td>
<td>0</td>
<td>2Z</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2Z</td>
</tr>
<tr>
<td></td>
<td>CII</td>
<td>2Z</td>
<td>0</td>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0</td>
<td>2Z</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CI</td>
<td>0</td>
<td>2Z</td>
<td>0</td>
<td>Z</td>
<td>Z</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Chiu and Schnyder (2014)